Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.259
Filtrar
1.
J Hazard Mater ; 472: 134528, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38733785

RESUMEN

In the United States, dangerously high arsenic (As) levels have been found in drinking water wells in more than 25 states, potentially exposing 2.1 million people to drinking water high in As; a known carcinogen. The anticipated sea-level rise (SLR) is expected to alter soil biogeochemical and hydrological conditions, potentially impacting their ability to sequester As. In our study of coastal Wilmington, DE, an area projected to experience a 1 -meter SLR by 2100, we examined the spatial distribution, speciation, and release possibilities of As due to SLR. To understand the complex dynamics at play, we employed a comprehensive approach, including bulk and micro X-ray absorption spectroscopy measurements, hydrological pattern evaluation, and macroscopic stirred-flow experiments. Our results suggest that introducing reducing and saline conditions can increase As release in both river water and seawater inundation scenarios, most likely due to ionic competition and the dissolution of As-bearing Fe/Mn oxides. Regardless of the salinity source, the released As concentrations consistently exceeded the EPA threshold for drinking water. Our results provide valuable insights for developing appropriate remedial and management strategies for this site and numerous others facing similar environmental challenges. ENVIRONMENTAL IMPLICATION: With nearly two hundred million individuals living within coastal flood plains and with two million square kilometers of land and one trillion dollars' worth of assets lying less than 1 m above current sea level, sea-level rise (SLR) is one of the significant socio-economic threats associated with global warming. Arsenic is a prevalent contaminant in coastal areas impacted by industrial activities, many of which are susceptible to being impacted by SLR. This study examines SLR's impact on arsenic fate and speciation in a densely populated coastline in Wilmington, DE, expecting 1 meter of SLR by 2100.

2.
Sci Total Environ ; : 173040, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729374

RESUMEN

China suffers from severe surface water pollution. Health impact assessment could provide a novel and quantifiable metric for the health burden attributed to surface water pollution. This study establishes a health impact assessment method for surface water pollution based on classic frameworks, integrating the multi-pollutant city water quality index (CWQI), informative epidemiological findings, and benchmark public health information. A relative risk level assignment approach is proposed based on the CWQI, innovatively addressing the challenge in surface water-human exposure risk assessment. A case study assesses the surface water pollution-related health impact in 336 Chinese cities. The results show (1) between 2015 and 2022, total health impact decreased from 3980.42 thousand disability-adjusted life years (DALYs) (95 % Confidence Interval: 3242.67-4339.29) to 3260.10 thousand DALYs (95 % CI: 2475.88-3641.35), measured by total cancer. (2) The annual average health impacts of oesophageal, stomach, colorectal, gallbladder, and pancreatic cancers added up to 2621.20 thousand DALYs (95 % CI: 2095.58-3091.10), revealing the significant health impact of surface water pollution on digestive cancer. (3) In 2022, health impacts in the Beijing-Tianjin-Hebei and surroundings, the Yangtze River Delta, and the middle reaches of the Yangtze River added up to 1893.06 thousand DALYs (95 % CI: 1471.82-2097.88), showing a regional aggregating trend. (4) Surface water pollution control has been the primary driving factor to health impact improvement, contributing -3.49 % to the health impact change from 2015 to 2022. It is the first city-level health impact map for China's surface water pollution. The methods and findings will support the water management policymaking in China and other countries suffering from water pollution.

3.
Bioresour Technol ; 402: 130776, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701979

RESUMEN

Insights into key properties of biochar with a fast adsorption rate and high adsorption capacity are urgent to design biochar as an adsorbent in pollution emergency treatment. Machine learning (ML) incorporating classical theoretical adsorption models was applied to build prediction models for adsorption kinetics rate (i.e., K) and maximum adsorption capacity (i.e., Qm) of emerging contaminants (ECs) on biochar. Results demonstrated that the prediction performance of adaptive boosting algorithm significantly improved after data preprocessing (i.e., log-transformation) in the small unbalanced datasets with R2 of 0.865 and 0.874 for K and Qm, respectively. The surface chemistry, primarily led by ash content of biochar significantly influenced the K, while surface porous structure of biochar showed a dominant role in predicting Qm. An interactive platform was deployed for relevant scientists to predict K and Qm of new biochar for ECs. The research provided practical references for future engineered biochar design for ECs removal.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38691290

RESUMEN

In this study, activated carbons were obtained from grape marc for tetracycline removal from wastewater. Activated carbons were obtained by subjecting them to pyrolysis at 300, 500, and 700 °C, respectively, and the effect of pyrolysis temperature on activated carbons was investigated. The physicochemical and surface properties of the activated carbons were evaluated by SEM, FTIR, XRD, elemental analysis, N2 adsorption/desorption isothermal, thermal gravimetric (TG) and derivative thermogravimetric (DTG), and BET surface area analysis. When the BET surface areas were examined, it was found that 4.25 m2/g for activated carbon was produced at 300 °C, 44.23 m2/g for activated carbon obtained at 500 °C and 44.23 m2/g at 700 °C, which showed that the BET surface areas increased with increasing pyrolysis temperatures. The pore volumes of the synthesized activated carbons were 0.0037 cm3/g, 0.023 cm3/g, and 0.305 cm3/g for pyrolysis temperatures of 300, 500, and 700 °C, respectively, while the average pore size was found to be 8.02 nm, 9.45 nm, and 10.29 nm, respectively. A better adsorption capacity was observed due to the decrease in oxygen-rich functional groups with increasing pyrolysis temperature. It was observed that the activated carbon obtained from grape skins can easily treat hazardous wastewater containing tetracycline due to its high carbon content and surface functional groups. It was also shown that the activated carbon synthesized in this study has a higher pore volume despite its low surface area compared to the studies in the literature. Thanks to the high pore volume and surface active groups, a successful tetracycline removal was achieved.

5.
Health Sci Rep ; 7(5): e2107, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715721

RESUMEN

Background and Aims: Water scarcity and poor water quality could lead to suboptimum menstrual hygiene practices, and subsequently urinary tract infection (UTI) and bacterial vaginosis (BV). In this study, we estimate the prevalence of self-reported UTI and BV among indigenous adolescent girls during the water scarcity period in the Bandarban Hill Districts in south-eastern Bangladesh. Methods: Using a cross-sectional design, a total of 242 indigenous adolescent girls were selected and interviewed during the seasonal water scarcity period (from February to May 2022) in Bandarban. The difference in prevalence of any self-reported UTI or BV symptoms by respondents' characteristics was assessed by χ 2 test. Multivariable logistic regression model was used to observe the associated factors. Results: The prevalence of self-reported UTI, BV, and any symptoms of UTI or BV among the respondents were 35.54%, 28.93%, and 43.80%, respectively. Ethnicity, studentship status, source of water used for menstrual hygiene, and perceived water quality were significantly associated with the prevalence of any self-reported UTI or BV symptoms. Conclusion: Findings recommend further research to cross-check the validity of self-reported prevalence and investigate if the episodes of UTI or BV could be attributable to water scarcity and poor water quality in study areas during dry period.

6.
Sci Total Environ ; : 172827, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701930

RESUMEN

Concentrations of chemicals in river water provide crucial information for assessing environmental exposure and risks from fertilisers, pesticides, heavy metals, illicit drugs, pathogens, pharmaceuticals, plastics and perfluorinated substances, among others. However, using concentrations measured along waterways (e.g. from grab samples) to identify sources of contaminants and understand their fate is complicated by mixing of chemicals downstream from diverse diffuse and point sources (e.g. agricultural runoff, wastewater treatment plants). To address this challenge, a novel inverse modelling approach is presented. Using waterway network topology, it quantifies locations and concentrations of contaminant sources upstream by inverting concentrations measured in water samples. It is computationally efficient and quantifies uncertainty. The approach is demonstrated for 13 contaminants of emerging concern (CECs) in an urban stream, the R. Wandle (London, UK). Mixing (the forward problem) was assumed to be conservative, and the location of sources and their concentrations were treated as unknowns to be identified. Calculated CEC source concentrations, which ranged from below detection limit (a few ng/L) up to 1µg/L, were used to predict concentrations of chemicals downstream. Using this approach, >90% of data were predicted within observational uncertainty. Principal component analysis of calculated source concentrations revealed signatures of two distinct chemical sources. First, pharmaceuticals and insecticides were associated with a subcatchment containing a known point source of treated effluent from a wastewater treatment plant. Second, illicit drugs and salicylic acid were associated with multiple sources, interpreted as input from untreated sewage including Combined Sewer Overflows (CSOs), misconnections, runoff and direct disposal throughout the catchment. Finally, a simple algorithmic approach that incorporates network topology was developed to design sampling campaigns to improve resolution of source apportionment. Inverse modelling of contaminant measurements can provide objective means to apportion sources in waterways from spot samples in catchments on a large scale.

7.
Heliyon ; 10(8): e29320, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644853

RESUMEN

Water scarcity threatens agriculture and food security in arid regions like Saudi Arabia. The nation produces significant quantities of municipal wastewater, which, with adequate treatment, could serve as an alternative water source for irrigation, thereby reducing reliance on fossil and non-renewable groundwater. This study assessed the appropriateness of using treated wastewater (TWW) for irrigation in a dry coastal agricultural region in Eastern Saudi Arabia and its impact on groundwater resources. Field investigations were conducted in Qatif to collect water samples and field measurements. A multi-criteria approach was applied to evaluate the TWW's suitability for irrigation, including complying with Saudi Standards, the Irrigation Water Quality Index (IWQI), the National Sanitation Foundation water quality index (NSFWQI), and the individual irrigation indices. In addition, the impact of TWW on groundwater was assessed through hydrogeological and isotope approaches. The results indicate that the use of TWW in the study area complied with the Saudi reuse guidelines except for nitrate, aluminum, and molybdenum. However, irrigation water quality indices classify TWW as having limitations that necessitate the use for salt-tolerant crops on permeable and well-drained soils. Stable isotopic analysis (δ2H, δ18O) revealed that long-term irrigation with TWW affected the shallow aquifer, while deep aquifers were minimally impacted due to the presence of aquitard layer. The application of TWW irrigation has successfully maintained groundwater sustainability in the study area, as evidenced by increased groundwater levels up to 2.3 m. Although TWW contributes to crop productivity, long term agricultural sustainability could be enhanced by improving effluent quality, regulating irrigation practices, implementing buffer zones, and monitoring shallow groundwater. An integrated approach that combines advanced wastewater treatment methods, community involvement, regulatory oversight, and targeted monitoring is recommended to be implemented.

8.
Environ Monit Assess ; 196(5): 475, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662271

RESUMEN

The potentially harmful effects of consuming potentially toxic elements (PTEs) and microplastics (MPs) regularly via drinking water are a significant cause for worry. This study investigated PTEs (Cd, Cu, Cr, Ni, Pd, Zn, Co), MPs, turbidity, pH, conductivity, and health risk assessment in the water treatment plant in Kielce, Poland. Zn had the highest concentrations throughout the water treatment facility, whereas Cd, Pb, and Co had lower concentrations (< 0.1 µg/L). The order of the concentrations among the specified PTEs was like Zn˃Cu˃Ni˃Cr˃Cd˃Pb and Co. The minimum turbidity was 0.34, and the maximum was 1.9 NTU. The range of pH in water samples was 6.51-7.47. The conductivity was 1,203-1,445 ms in water samples. These identified MPs were categorized into fiber and fragments. The color of these identified MPs was blue, red, black, green, and transparent. The minimum and maximum size of the MPs was 196 and 4,018 µm, while the average size was 2,751 ± 1,905 µm. The average concentration of MPs per liter of the water treatment plant was 108.88 ± 55.61. The elements listed are C, O, Na, Mg, Al, Si, K, Ca, and Ti. Fe and Zn were the predominant elements seen using EDX. HQ values of the PTEs were less than one for adults and children. The human health risk associated with all detected PTEs revealed that the HQ values exhibit a satisfactory degree of non-carcinogenic adverse health risk. HI values for adults and children age groups were less than one. In most water treatment samples, the carcinogenic value exceeds the threshold value of 10-6. The PTEs and MP concentrations in drinking water should be periodically monitored to minimize consumers' environmental pollution and health risks.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/análisis , Polonia , Microplásticos/análisis , Purificación del Agua/métodos , Humanos , Medición de Riesgo , Agua Potable/química , Metales Pesados/análisis , Adulto
9.
Sci Total Environ ; 927: 172250, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599404

RESUMEN

Understanding the geochemistry and contamination of rivers affected by anthropogenic activities is paramount to water resources management. The Asopos river basin in central Greece is facing environmental quality deterioration threats due to industrial, urban and agricultural activities. Here, the geochemistry of river sediments and adjacent soil in terms of major and trace elements (Al, Ca, Mg, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and the geochemical composition of surface water in terms of major ions, trace elements and nutrients along the Asopos river basin were determined. In addition, this study characterized potential nitrate sources through the analysis of stable isotope composition of NO3- (δ15Ν-ΝΟ3- and δ18Ο-ΝΟ3-). Results indicated that specific chemical constituents including nutrients (NO2-, NH4+, PO43-) and major ions (Na+, Cl-) were highest in the urban, industrialized and downstream areas. On the other hand, nitrate (NO3-) concentration in river water (median 7.9 mg/L) showed a decreasing trend from the upstream agricultural sites to the urban area and even more in the downstream of the urban area sites. Ionic ratios (NO3-/Cl-) and δ15Ν-ΝΟ3- values (range from +10.2 ‰ to +15.7 ‰), complemented with a Bayesian isotope mixing model, clearly showed the influence of organic wastes from septic systems and industries operating in the urban area on river nitrate geochemistry. The interpretation of geochemical data of soil and river sediment samples demonstrated the strong influence of local geology on Cr, Fe, Mn and Ni content, with isolated samples showing elevated concentrations of Cd, Cu, Pb and Zn, mostly within the industrialized urban environment. The calculation of enrichment factors based on the national background concentrations provided limited insights into the origin of geogenic metals. Overall, this study highlighted the need for a more holistic approach to assess the impact of the geological background and anthropogenic activities on river waters and sediments.

10.
Biochim Biophys Acta Biomembr ; 1866(5): 184320, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38583701

RESUMEN

Ionic liquids (ILs) have recently gained significant attention in both the scientific community and industry, but there is a limited understanding of the potential risks they might pose to the environment and human health, including their potential to accumulate in organisms. While membrane and storage lipids have been considered as primary sorption phases driving bioaccumulation, in this study we used an in vitro tool known as solid-supported lipid membranes (SSLMs) to investigate the affinity of ILs to membrane lipid - phosphatidylcholine and compare the results with an existing in silico model. Our findings indicate that ILs may have a strong affinity for the lipids that form cell membranes, with the key factor being the length of the cation's side chain. For quaternary ammonium cations, increase in membrane affinity (logMA) was observed from 3.45 ± 0.06 at 10 carbon atoms in chain to 4.79 ± 0.06 at 14 carbon atoms. We also found that the anion can significantly affect the membrane partitioning of the cation, even though the anions themselves tend to have weaker interactions with phospholipids than the cations of ILs. For 1-methyl-3-octylimidazolium cation the presence of tricyanomethanide anion caused increase in logMA to 4.23 ± 0.06. Although some of our data proved to be consistent with predictions made by the COSMOmic model, there are also significant discrepancies. These results suggest that further research is needed to improve our understanding of the mechanisms and structure-activity relationships involved in ILs bioconcentration and to develop more accurate predictive models.

11.
Sci Total Environ ; 927: 172077, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569955

RESUMEN

Human activities affect terrestrial and aquatic habitats leading to changes at both individual and population levels in wild animal species. In this study, we investigated the phenotype and demographics of the Mediterranean pond turtle Mauremys leprosa (Schweigger, 1812) in contrasted environments of Southern France: two peri-urban rivers receiving effluents from wastewater treatment plants (WWTP), and another one without sewage treatment plant. Our findings revealed the presence of pesticides and pharmaceuticals in the three rivers of investigation, the highest diversities and concentrations of pollutants being found in the river subsections impacted by WWTP effluents. Principal component analysis and hierarchical clustering identified three levels of habitat quality, with different pollutant concentrations, thermal conditions, nutrient, and organic matter levels. The highest turtle densities, growth rates, and body sizes were estimated in the most disturbed habitats, suggesting potential adult benefits derived from harsh environmental conditions induced by pollution and eutrophication. Conversely, juveniles were the most abundant in the least polluted habitats, suggesting adverse effects of pollution on juvenile survival or adult reproduction. This study suggests that turtles living in polluted habitats may benefit from enhanced growth and body size, at the expense of reproductive success.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Tortugas , Contaminantes Químicos del Agua , Animales , Tortugas/fisiología , Francia , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Estanques
12.
J Environ Sci Health B ; 59(5): 263-276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584450

RESUMEN

Water pollution with pesticides is one of the most important environmental problems. Polychlorinated biphenyls (PCBs) reach water bodies via agricultural discharge. The aim of this study was to determine the contamination of different water bodies with PCB congeners, and detect the correlation between water quality parameters and seasonal distribution of these PCBs. The results indicated that water canals of AlGharbiah showed the highest ranges of temperature, total dissolved solids (TDS) in spring, and dissolved oxygen (DO) in autumn, while AlQaliobiah water bodies witnessed the highest pH and electrical conductivity (EC) ranges in summer. The highest range of a PCB congener was that of PCB44 (7.96-118.29 µg/g) in sediment samples of Giza, followed by its range (18.01-85.44 µgL-1) in surface water of AlQaliobiah. We found a potential cancer risk from dermal contact with all the investigated PCBs. Principal component analysis (PCA) showed positive correlations between most PCBs and each of EC and TDS, and a negative correlation with DO. While the correlation between PCBs and each of temperature and pH varied according to the geographic location of the governorate. In conclusion, the investigated water canals were contaminated with PCBs, which posed a potential cancer risk and deteriorated water quality.


Asunto(s)
Neoplasias , Bifenilos Policlorados , Contaminantes Químicos del Agua , Humanos , Bifenilos Policlorados/análisis , Calidad del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Medición de Riesgo
13.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673744

RESUMEN

Schiff bases (SBs) are important ligands in coordination chemistry due to their unique structural properties. Their ability to form complexes with metal ions has been exploited for the environmental detection of emerging water contaminants. In this work, we evaluated the complexation ability of three newly proposed SBs, 1-3, by complete conformational analysis, using a combination of Molecular Dynamics and Density Functional Theory studies, to understand their ability to coordinate toxic heavy metal (HMs) ions. From this study, it emerges that all the ligands present geometries that make them suitable to complex HMs through the N-imino moieties or, in the case of 3, with the support of the oxygen atoms of the ethylene diether chain. In particular, this ligand shows the most promising coordination behavior, particularly with Pb2+.


Asunto(s)
Complejos de Coordinación , Metales Pesados , Simulación de Dinámica Molecular , Bases de Schiff , Bases de Schiff/química , Metales Pesados/química , Complejos de Coordinación/química , Teoría Funcional de la Densidad , Ligandos
14.
FEMS Microbiol Ecol ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684474

RESUMEN

Wastewater pollution of water resources takes a heavy toll on humans and on the environment. In highly polluted water bodies, self-purification is impaired, as the capacity of the riverine microbes to regenerate the ecosystem is overwhelmed. To date, information on the composition, dynamics, and functions of the microbial communities in highly sewage-impacted rivers is limited in particular in arid and semi-arid environments. In this year-long study of the highly sewage-impacted Al-Nar/Kidron stream in the Barr al-Khalil/Judean Desert east of Jerusalem we show, using 16S and 18S rRNA gene-based community analysis and targeted QPCR, that both the bacterial and micro-eukaryotic communities, while abundant, exhibited low stability and diversity. Organic compounds hydrolyzers, and nitrogen and phosphorus recyclers were lacking, pointing at a reduced potential for regeneration. Furthermore, facultative bacterial predators were almost absent, and the obligate predators Bdellovibrio-and-like-organisms were found at very low abundance. Finally, the micro-eukaryotic predatory community differed from those of other freshwater environments. The lack of essential biochemical functions may explain the stream's inability to self-purify while the very low levels of bacterial predators and the disturbed assemblages of micro-eukaryote predators present in Al-Nar/Kidron may contribute to community instability and disfunction.

15.
Micromachines (Basel) ; 15(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38675298

RESUMEN

This paper describes an electrochemical sensor based on a Cu-modified boron-doped diamond (BDD) electrode for the detection of nitrate-contaminated water. The sensor utilizes the catalytic effect of copper on nitrate and the stability of the BDD electrode. By optimizing the electrolyte system, the linear detection range was expanded, allowing the sensor to detect highly concentrated nitrate samples up to 100 mg/L with a low detection limit of 0.065 mg/L. Additionally, the stability of the sensor was improved. The relative standard deviation of the current responses during 25 consecutive tests was only 1.03%. The wide detection range and high stability of the sensor makes it suitable for field applications and the on-site monitoring of nitrate-contaminated waters.

16.
Environ Manage ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578325

RESUMEN

This study designs a double-bounded dichotomous questionnaire, and uses the Contingent Valuation Method (CVM) to estimate residents' willingness to pay(WTP) for water pollution control along the Taihu Lake Basin. The results of the returned questionnaire show that 82.76% of the residents are willing to pay. CVM estimation results show that the average WTP of residents for water pollution control is 138.86 yuan/year. In addition, the influencing factors of WTP are explored using a Logistic regression model, and the heterogeneity of WTP among residents of different genders is analyzed. The study found that: (1) The younger the residents, the higher their WTP; (2) The higher the income, the higher the residents' WTP for water pollution control; (3) Residents with higher educational level are more willing to pay; (4) The higher the degree of residents' understanding of water pollution control policies, the higher the WTP; (5) The higher the degree of residents' recognition of pro-environmental behavior, the higher the WTP; (6) Male residents' WTP is mainly affected by cognitive factors such as their understanding of governance policies and their approval of pro-environmental behaviors, while female residents' WTP is mainly affected by personal attributes, such as age, income, and the number of household laborers. Furthermore, this study proposes targeted measures to improve residents' WTP from three aspects: the government enriches the channels for residents to participate in water pollution control, the social media enriches the popularization of water environment knowledge, and the school strengthens the education of environmental protection knowledge, considering the differences in residents' characteristics. Therefore, this study can provide a theoretical reference and decision-making basis for encouraging residents to participate in water pollution control, promote the construction of a beautiful watershed, and provide a reference for other basins.

17.
Environ Monit Assess ; 196(5): 440, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592560

RESUMEN

The absence of a sewer system and inadequate wastewater treatment plants results in a discharge of untreated wastewater to the urban drainage channels and pollutes receiving waters. Field visits were carried out to observe water quality parameters such as dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) in an urban drainage system (Kolshet drain) in Thane City, Mumbai Metropolitan Region, India. Dye-tracing studies using rhodamine WT dye were used for computing the velocity, discharge, and dispersion coefficient of the drain. The data analysis shows that the BOD and COD values in the drain are higher than the permissible limits (30 mg L-1 for BOD and 250 mg L-1 for COD), which is not suitable for disposal to any receiving water body. Also, the DO was less than the permissible limit of a minimum of 3 mg L-1 (for the survival of aquatic life). It is seen that the higher BOD load significantly reduced the DO throughout the drain. The Water Quality Analysis Simulation Program (WASP 8.32, 2019) developed by the US Environmental Protection Agency (USEPA) has been used for the simulation of the DO and BOD in the drainage channel. The model simulates an appropriate estimate of the expected variation of DO and BOD at points of interest. The modeling for the Kolshet drain is expected to enable better estimates of the wastewater parameters and the pollution transport in the drain for planning purposes.


Asunto(s)
Aguas Residuales , Calidad del Agua , Estados Unidos , Monitoreo del Ambiente , India , Simulación por Computador , Oxígeno
18.
Sci Rep ; 14(1): 8029, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580774

RESUMEN

Environmental accidents highlight the need for the development of efficient materials that can be employed to eliminate pollutants including crude oil and its derivatives, as well as toxic organic solvents. In recent years, a wide variety of advanced materials has been investigated to assist in the purification process of environmentally compromised regions, with the principal contestants being graphene-based structures. This study describes the synthesis of graphene aerogels with two methods and determines their efficiency as adsorbents of several water pollutants. The main difference between the two synthesis routes is the use of freeze-drying in the first case, and ambient pressure drying in the latter. Raman spectroscopy, Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and contact angle measurements are employed here for the characterisation of the samples. The as-prepared aerogels have been found to act as photocatalysts of aqueous dye solutions like methylene blue and Orange G, while they were also evaluated as adsorbents of organic solvents (acetone, ethanol and methanol), and, oils like pump oil, castor oil, silicone oil, as well. The results presented here show that the freeze-drying approach provides materials with better adsorption efficiency for the most of the examined pollutants, however, the energy and cost-saving advantages of ambient-pressure-drying could offset the adsorption advantages of the former case.

19.
Environ Res ; : 118883, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583658

RESUMEN

While durian shell is often discharged into landfills, this waste can be a potential and zero-cost raw material to synthesize carbon-based adsorbents with purposes of saving costs and minimizing environmental contamination. Indole (IDO) is one of serious organic pollutants that influence aquatic species and human health; hence, the necessity for IDO removal is worth considering. Here, we synthesized a magnetic composite, denoted MFOAC, based on activated carbon (AC) derived from durian shell waste supported by MnFe2O4 (MFO) to adsorb IDO in water. MFOAC showed a microporous structure, along with a high surface area and pore volume, at 518.9 m2/g, and 0.106 cm3/g, respectively. Optimization of factors affecting the IDO removal of MFOAC were implemented by Box-Behnken design and response surface methodology. Adsorption kinetics and isotherms suggested a suitable model for MFOAC to remove IDO. MFOAC was recyclable with 3 cycles. Main interactions involving in the IDO adsorption mechanism onto MFOAC were clarified, including pore filling, n-π interaction, π-π interaction, Yoshida H-bonding, H-bonding.

20.
Int J Biol Macromol ; 268(Pt 2): 131853, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679268

RESUMEN

The discharge of heavy metal ions from industrial wastewater into natural water bodies is a consequence of global industrialisation. Due to their high toxicity and resistance to degradation, these heavy metal ions pose a substantial threat to human health as they accumulate and amplify. Alginate-based composite gels exhibit good adsorption and mechanical properties, excellent biodegradability, and non-toxicity, making them environmentally friendly heavy metal ion adsorbents for water with promising development prospects. This paper introduces the basic properties, cross-linking methods, synthetic approaches, modification methods, and manufacturing techniques of alginate-based composite gels. The adsorption properties and mechanical strength of these gels can be enhanced through surface modification, multi-component mixing, and embedding. The main production processes involved are sol-gel and cross-linking methods. Additionally, this paper reviews various applications of alginate composite gels for common heavy metals, rare earth elements, and radionuclides and elucidates the adsorption mechanism of alginate composite gels. This study aimed to provide a reference for synthesising new, efficient, and environmentally friendly alginate-based adsorbents and to contribute new ideas and directions for addressing the issue of heavy metal pollution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...